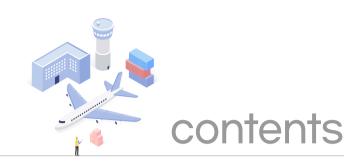


2022 혁신성과 우수사례(BP) 경진대회



2022 혁신성과 우수사례(BP) 경진대회

최우수상

04 태양광 발전설비 화재대응 조기화재경보 SYSTEM 구축

전기그룹 전력운영사업소

우수상

12 BT, 스마트앱을 이용한 동력설비 원격점검 및 관리방안

- 기계그룹 열원사업소

16 비전 2025 〈Global Standard〉 목표 달성을 위한 Web 기반 SYSTEM 구축

- **전기그룹** 전력운영사업소

장려상

24 HST 미터링 컨베이어 개선으로 운영효율 증가

- 운송그룹 T1수하물사업소

27 외곽경비보안용 침입감지시스템 장애진단용 자기회로 KIT 제작

- 통신그룹 보안교통사업소

입선

32 「위탁사업비 정산기준」 수립을 통한 업무 개선

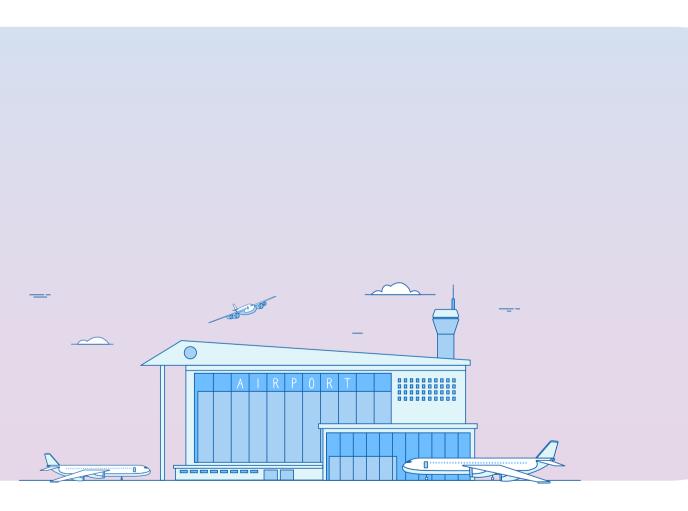
- 경영기획그룹 계약팀

35 사업본부 품질분임조 활동 운영

- 사업관리그룹 사업기획팀

39 수입장비 주요 소모품 "국산화"를 통한 품질개선 및 비용절감, 업무효율 증대

- **시설그룹** 비행장사업소


42 ICS Merge/Divert 구동휠 추가 설치

- 운송그룹 T2수하물사업소

47 항공등화 매입용 철제홀 변형 문제점 개선으로 유지보수 및 재설치 비용 절감

- 전기그룹 등화환경사업소

최우수상

01 태양광 발전설비 화재대응 조기화재경보 SYSTEM 구축 (태양광접속반 등 각종 PANEL 내 화재예방 경보장치 및 개선) – 전력운영사업소 **부서명** 전기그룹 전력운영사업소

작성자 T2 자탄틱

태양광 발전설비 화재대응 조기화재경보 SYSTEM 구축

태양광접속반 등 각종 PANEL 내 화재예방 경보장치 및 개선

■ 제2여객터미널 인버터실내 콘덴서 소손 화재 사고 발생

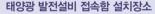
• 제2여객터미널 5층에서 발생된 인버터실 콘덴서 소손에 따른 화재 사고를 계기로 하여 <mark>화재감시 사각 지역을 해소</mark>하고 화재 시 발생되는 초기 상태에서 화재를 인지 하여 신속한 화재 진압(진화)을 통해 안전한 인천공항이 되도록 함에 있음.

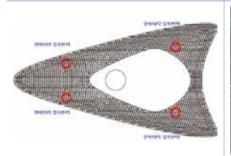
태양광 PANEL 화재 초기 소화 모습

화재로 인해 소손 된 인버터 내부 모습

- 화재감지기는 법적 기준에 요구되는 장소에만 설치하고, 설치가 불가하거나 어려운 장소에는 설치기준이 없으므로 초기공사 시 설치되지 않음.
- 태양광발전설비 중 접속반 및 인버터 등 태양광 관련 PANEL 내부에서 화재 사고가 빈번히 발생하고 있는 현실을 고려하여 화재 확대 전 사전 감지가 가능하도록 온도 센서를 활용한 화재 초기상황을 판단하고 관련자(자탐 및 전기 직원)의 현장 출동 으로 화재를 조기에 방지할 목적임.

캣워크 내 태양광 PANEL은 화재 발생에 취약한 구조와 장소특성을 가짐


- 태양광 접속반 화재 시 문제점
 - 태양광 접속반 내 화재를 감시할 수 있는 장치가 없어 화재 시 접근의 어려움 으로 인해 화재피해가 증가하여 공항운영에 막대한 피해가 발생 될 수 있음
 - 제2여객터미널 태양광 접속반 특성상 화재 시 인버터실 내 모듈러 소화가스가 동작되더라도 태양광 PANEL을 통해 계속 전기를 공급하기 때문에 화재는 제때 진압되지 않을 수 있으며 태양광 접속반이 PANEL 형태로 소화가스가 내부로 제때 침투되지 않을경우 소화가 불가능 할 수 있음
 - 화재시는 태양광 발전이 되지 않아야 하고 접속반 인입 전(인버터실 외부)에 차단기를 설치하여 인위적으로 차단기를 차단하는 등의 조치를 취해야 하나 현 설치상태에서는 불가능한 상태임
 - 제2교통센터 태양광 접속반은 에너지코어 상부 캣워크에 설치되어 있어 화재 발생시는 접근이 불가능하여 즉각적인 소화 활동에 어려움이 있음



■ Plan(계획): 화재 발생시 대처방안 및 계획 수립

- 화재 발생에 따른 초기소화 문제점 검토
 - 제2여객터미널: PANEL 내부 화재시 접근성의 제약으로 인한 신속 대처에 어려움 발생
 - 제2교통센터 : 에너지 코어 상부에 설치되어 연기 발생시는 소방대원이라도 접근을 할 수 없는 구조이며 완전 연소 후에야 접근 가능

제2교통센터의 경우 태양광 접속반이 캐드웍 천정 내부 4개소에 분산 설치되어 있어 화재 시 접근을 할 수 없는 구조임

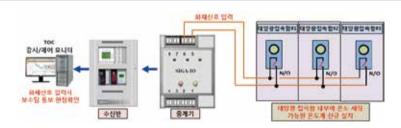
- 접속함의 구조적 문제점 파악
 - 제작사 의뢰 온도 감시 센서 부착 여부 문의(불가능 통보 받음)
- 자체 개선 방안 마련
 - 접속반 내 화재감시시스템 대응 가능한 온도 센서 조사 및 구매 적용성 검토

- 접속반 내부온도 조사 및 검토
 - 한여름 8월경 접속반 내부온도 조사 및 데이터 구축
- 가능 여부 파악 후 개선작업 검토

- 개선작업에 필요한 자재 파악

대구역	세부위치	중계기	온도계	중계기함	전선관	후렉시블	통신선	HFIX	4각박스
	인버터실#1	1	3	1	1.5	15	1	40	
제2여객	인버터실#2	1	6	1	1.5	30	1	70	
터미널	인버터실#3	1	3	1	1.5	15	1	40	
	인버터실#4	1	3	1	1.5	15	1	40	
제2교통센터	캐드웍	4	4	4	30	250	460	40	10
합계		8	19	8	36	325	464	230	10

- 기타 태양광 발전설비 관련 개선사항 검토
 - 인버터 PANEL 잠금장치 개선 필요 검토 (밀폐 구조로 화재 시 초기 소화 어려움 발생)
 - 각종 PANEL 내부 소공간용 소화용구 설치 검토 (실 화재 시 초기소화용 인버터 및 접속반 내 설치 필요)


■ Do(실행): 태양광 접속반 이상 과열 시 경보 발생 장치 설치 외

• 제2여객터미널 및 제2교통센터 태양광 접속반 위치

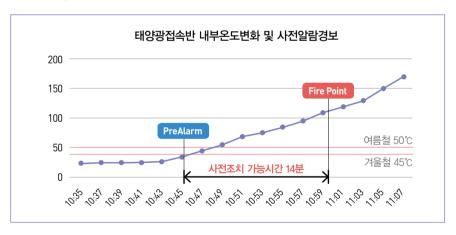
대구역	세부위치	접속반	비고
	인버터실#1	3	온도센서 및 중계기 사용
페이어캐디미! 크	인버터실#2	6	온도센서 및 중계기 사용
제2여객터미널	인버터실#3	3	온도센서 및 중계기 사용
	인버터실#4	3	온도센서 및 중계기 사용
제2교통센터	캐드웍	4	온도센서 및 중계기 사용
합계		19	

- 제2교통센터 태양광 접속반은 평상시 접근이 원활하지 못한 캣워크 내에 설치 되어 있어 화재 발생 시 접근의 어려움이 있어 "사전인지"과정 반드시 필요
- 자동화재탐지설비 중계기와 온도 센서를 활용한 조기 화재 경보장치 설치
 - 태양관 접속반 온도 센서와 자동화재탐지설비와의 연계도

접속함 내부 온도계 부착 후 병렬로 결선하여 접점(N/O → N/C)을 중계기 입력에 결선

- 각종 배관, 배선, 중계기 설치 및 온도 센서 설치

- 수신반 프로그램 실시 및 업로드 실시
 - 태양광 접속반 화재감시를 위한 수신반 프로그램 구성 및 프로그램 적용
 - 화재감시 수신반에 프로그램 업로드 실시


• 화재 경보 감시장치 GDS 아이콘 추가

- 자동화재탐지시스템 화재감시장치(GDS)에 태양광 전용 아이콘 삽입
- 온도센서 일정온도 발생시 예비알람 설정

■ Check(평가/확인): 온도센서 설정에 따른 알람 설정

- 현장 태양광 접속반 내부 온도 측정
 - 접속반 내부온도 조사(여름 혹서기 기준)
 - 태양광 내부온도 50℃ 이하로 조사 되어 온도센서 온도 45~50℃ 기준 설정
 - 태양광접속반 발화직전 특이한 원인에 의하여 발열이 발생하고 발열 온도가 평상시 25℃에서 서서히 증가하여 45℃(여름철 50℃)가 초과하게 되면 PreAlarm의 신호를 TOC로 보내어 화재감시화면에 표시하게 되고, 보수팀을 현장에 접근하여 실제 발화가 되기전에 조치하도록 시스템을 구축

■ Act(개선/조치): 구축된 SYSTEM을 통한 통합훈련 및 기타 개선사항 추진

- 온도 센서 동작에 따른 종합 훈련 실시
 - 개선된 태양광 발전 화재감시 장치를 통해 전기 및 자탐 직원을 통해 세부 훈련 실시

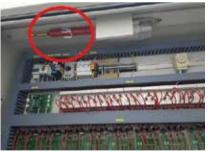
- 향후 발생 될 수 있는 화재 상황을 대비하여 훈련을 실시하고 추가 개선사항 발굴 및 미비사항 점검(소화기 설치 수량 부족에 따른 소화기 요청 등)
- 기타개선사항 1 : 태양광 인버터 판넬 잠금장치 개선
 - 인버터 PANEL DOOR 안쪽에 설치된 잠금장치 제거 후 외부에 잠금장치 설치 로 점검 또는 화재 발생 시 신속히 처리 가능토록 개선

개선전: PANEL 내부에 작금장치가 있어 개문이 어려움

개선후: PANEL 외부 자석식으로 개선하여 비상시 개문이 쉽도록 변경

PANEL 내부 DOOR 잠금장치(개선 전)

DOOR 잠금장치 설치(자석식)



• 기타개선사항 2 : 태양광설비 각종 PANEL 내 초기소화용 소화용구 설치

태양광 인버터실

태양광 접속반 (제2여객터미널 5개소, 제2교통센터 2개소) 설치 (제2여객터미널 15개소, 제2교통센터 4개소) 설치

- 기타개선사항 3 : 향후 설치되는 태양광 발전설비 온도 센서 부착 권고 및 SYSTEM 알람 발생 조치 요청(4단계 공사 관계자)
 - 향후 설치되는 태양광 관련 PANEL에 온도 센싱 기기를 부착하고 태양광발전 SYSTEM에서 표시 및 알람이 가능토록 설계자, 감리 및 공사 관련자에 통보

추진성과

■ 개선 성과

- 태양광 접속함 화재 시 신속한 대처 가능
- 화재가 확산 되기 전 사전에 태양광 접속반의 온도 상태를 확인할 수 있으므로 화재로 인한 피해를 최소화하고 조기 출동 초동 조치 가능
- 실 화재 발생 전 사전 예방 효과가 크며 만약 화재 시라도 초기에 발견하여 신속 진압 가능함으로 인해 공항 운영 피해를 최소화 할 수 있음

■ 주요 개선사항 전후 비교표

현 행(전)	개 선(후)
• 태양광 접속반 내 화재 감지장치 없음	 태양광 접속반 내 화재 감지장치 설치 온도 센서를 설치하여 45~50℃ 과열 시 사전화재 경보(Pre Alarm) SYSTEM 구축
• 판넬 내부 발열시 감시 불능	• 판넬 내부 발열 시 TOC 화재감시모니터에 경보 발생 - 보수팀 현장에 출동하여 화재징후 사전 조사 가능
• 인버터 판넬 잠금장치 - 내부에서 잠금하도록 설치되어 화재 시 개문이 어려움	• 인버터 판넬 잠금장치 개선 - 자석식 도어 장치로 교체 - 개문이 쉬워 초기화재 시 즉각적인 대응
각종 PANEL 내부 소화장치 없음 소화장치 미비로 인한 초기화재 대응에 신속한 처리 불가능 ***********************************	• 각종 PANEL 내부 간이소화용구 설치 – 초기화재 시 자체적으로 초기 소화가 가능하므로 신속한 대응 가능

정성적 성과	 화재감시 사각 지역을 발굴하여 화재 발생 초기에 감지하도록 SYSTEM 구성 운영중인 화재감시설비와 연계를 통해 TOC 감시화면에 표시되도록 개선하여 개선비용 최소화. 초기화재 발생 시 초기 소화에 어려움이 있는 인버터 장치 개문 개선 자체적으로 화재를 판단해 가스가 살포되는 소화 용구 설치로 화재 초기 빠른 시간내 소화되도록 개선 조치 향후 설치되는 태양광 PANEL 내부온도 센싱 가능한 구조 설치 및 태양광
	SYSTEM 경보기능 추가 권고로 사전 예방조치 실시
정량적 성과	OUH터 또는 접속반 화재 사고 발생 시 복구 비용만 수억원 소요되므로 사전에 화재징후를 판단하고 감시하여 향후 발생 될 수 있는 비용 절감 실현 선생서 구입을 제외한 배관, 배선, 중계기 설치 및 프로그램 수정, 화면 표시장치 수정에 필요한 내용을 자체 기술력으로 처리하여 비용 절감 자체 개선으로 인한 절감 비용 : 23,100,000원 제2교통센터 캣워크 내 소방설비중 감지기 설치 시 배관 배선의 어려움 및 감지기 부착위치의 부적절성으로 인한 문제점 등이 있으며, 간단한 개선으로 인한 불필요한 비용 수억원의 설치비용을 절감하는 효과가 있음

우수상

01 BT. 스마트앱을 이용한 동력설비 원격점검 및 관리방안 - 열원사업소

02 비전 2025 (Global Standard) 목표 달성을 위한 Web 기반 SYSTEM 구축 - 전력운영사업소

부서명 기계그룹 역원사업소

작성자 송언석, 배준혁 김연

BT, 스마트앱을 이용한 동력설비 원격점검 및 관리방안

■ 인력 효율성 향상 필요

제2여객터미널 확장 및 관련 부대건물 신축 등 시설물 증설로 인한 보수인력 효율화 필요성 대두

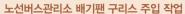
■ 안전사고 예방을 통한 근로환경 개선

옥상층 급·배기팬, 냉각탑 등 일부 높은 위치에 설치되어있는 설비관리를 위해 수직 사다리를 사용해야하는 등 해당업무 수행시 안전사고 발생 우려

■ 정량사용을 통한 자재 과다사용 방지

구리스 도포 작업 특성상 일정 주기(월, 분기)마다 수작업으로 진행하고 있으며, 이로 인해 설비마다 적정량만큼 주입하기 어렵고 균일하게 도포할 수 없음.

■ Plan(계획)


- 21년 5월 자동 구리스 주입기 설치 계획 수립
 - 자동구리스주입기 모델 비교 및 선정

제품	SHELL사	Pulsar	lube사	
분류	SHELLAF	일반모델	BT모델	
제조사	중국OEM	국내산	국내산	
원격여부	X	X	O (통신거리 최대 20m)	
재질	플라스틱	스틸, 황동	스틸, 황동	
나사규격	1/4"	3/8"	3/8"	
주유방법	저압식(6~8Bar)	고압식(30~60Bar)	고압식(30~60Bar)	
설치거리	최대 1,500mm	최대 6,000mm	최대 6,000mm	
선정제품			0	

- BT모델 자동구리스주입기 샘플 설치장소 선정(노선버스관리소)

노선버스관리소 수직사다리

■ Do(샘플설치)

• 21년 10월 노선버스관리소 화장실용 옥외 배기팬 블루투스 타입 자동 구리스 주입기 1개소 샘플 설치

BT모델 자동 구리스 주입기 자재 사진

■ Check(평가)

- 수직 사다리를 이용하지 않고도 설비상태를 스마트 앱으로 확인 가능
- 스마트 앱을 이용하여 근로자 1명이 동기화시, 다른 점검자 스마트폰 앱에서도 구리스 주입 상태 공유
- 스마트폰 앱으로 구리스 주입 주기 조작 가능

■ Act(개선)

- 블루투스 특성상 주입기와 수신기 사이에 장애물이 존재하면 수신감도가 미약해 지는 단점 확인
- 해당 모델은 주입관을 최대 6M까지 연장이 가능하므로, 향후 설치 진행시 수신감도 고려하여 설치할 필요
- 냉각탑, 옥외 배기팬 등 접근이 어렵고 위험한 장소에 위치한 설비에 효과적

향후 동일 제품 설치시 고려해야할 사항 (개선요망)

냉각탑 상부 설치 (예시)

정성적 성과

무중단 운영 인력 절약 효율 증대

안전한 근무 환경을 통한 근로자 만족도 상승

입주자 및 방문객 질 좋은 서비스 제공

〈BT 자동 그리스 주입기 설치 전, 후비교〉

	Paper Roll 사용량	보충 주기	작업시간	비고
개선 전	연 12 ~ 24장	연 12 회	연 360분	노선버스관리소 배기팬
개선 후	연 1장	연1회	연 30분	메기덴 (부하, 반부하)

정량적 성과

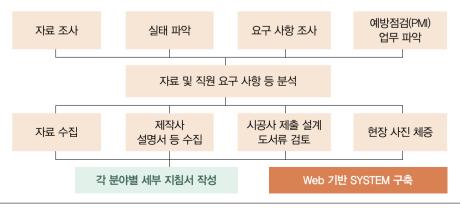
- 수직사다리 사용시 발생할 수 있는 각종 안전사고(낙차, 부주의로 인한 중량물 낙하 등) 발생률이 감소될 것으로 보이며, 사업장 안전관리를 통한 근로자 근로환경개선
- 구리스 주입시 해당 설비를 정지시키지 않고 주입이 가능하며, 설비 중단시 발생할 수 있는 불편함을 최소화 하여 고객 만족도 증대
- 연간 보수. 점검시간을 절약하여 인력 효율화 기여

부서명 전기그룹 전력운영사업소

작성자 시승조

비전 2025 〈Global Standard〉 목표 달성을 위한 Web 기반 SYSTEM 구축

세부 지침서 작성 및 Web 프로그래밍 구축



■ 각종 절차서, 지침서 규격화 필요

- 전력운영시설에서 운영하는 전력설비, 조명설비, 자탐설비의 규격화되고 체계적인 지침서 부족으로 인한 효율적이고 체계적인 관리 및 교육 미비
- 현장 점검이나, 상황 발생 시 현장에서 긴급히 처리할 상황이 발생될 경우 현장에 서 설비에 대한 자세한 내용을 정확히 숙지하기에는 한계 발생
- 설비에 대한 자세한 내용을 파악하기 위해 사무실에 비치된 각종 도서를 활용 하여야 하나 구조상 신속한 확인에 어려움을 겪는 경우가 많음
- 준공 시점에 제출된 도서류의 자료가 미비하고 현장에 적용되지 않은 자료가 제출 되는 등의 문제로 인해 시공사에서 제출한 자료를 현장에 직접적으로 활용하기에 는 비효율적이고 부정확한 내용으로 인한 혼선 발생
- 직원들의 교육 자료 및 설비가 설치된 현장에서 직접 열람하여 신속히 처리할 수 있는 체계적인 지침규격 및 현장에 적용된 설비에 대해 쉽게 접근할 수 있는 대안 필요
- 직원의 역량 강화에 따른 전문적이고 체계적인 자료를 통한 전문가 육성 필요 시점 대두
- 4단계 증설 후 인원 미증원 예정에 따른 인력의 효율적 운영 및 업무 능력 향상을 위한 자료의 신속, 정확 접근성이 강조됨에 따른 Web 기반의 System을 통한 모바일 기기 등에서 직접 자료 열람 가능 필요

■ Plan(계획): 추진 방향 모색

■ Do(실행): 전력, 조명 자탐분야 세부 지침서 작성

- 세부 지침서 작성을 위한 자료수집
- 시공사 제출 각종 설계. 준공 도서류
- 시공사 초기 운영 교육 자료
- 제작사 카다로그 및 사용 설명서 등 자료수집 및 취합
- 예방점검(PMI) 세부 점검 항목 조사
- 기타 지침서 작성에 필요한 기술자료
- 해당 근로자 요구 사항 검토
- 현장 상황에 맞는 사진 촬영 및 영상 자료수집
- 세부 지침서 작성(약 24개월 소요)
 - 전력분야 세부 지침서(15권 약 2.297페이지)
 - 조명분야 세부 지침서(7권 약 2,255페이지)
 - 자탐분야 세부 지침서(11권 약 3.179페이지)
 - 용어해설, 해당 법규. 기초지식, 현장 설치 위주 설비 기술 사항, 취급 방법, 도면 중요 사항 설명. 현장 설치 내용. 사진을 활용한 예방점검 및 비상조치 방법. 사용 방법 등 다양한 내용으로 현장 상황에 적용토록 제작
 - 각 분야별 쉽게 내용을 확인할 수 있도록 세부별, 용도별 등으로 세분하여 총 33권 7.700Page로 구성

NI-	전력분야		조명분야		자탐분야	
No	세부 지침서 구성(권)	Page	세부 지침서 구성(권)	Page	세부 지침서 구성(권)	Page
01	전기실(LOAD CENTER)	204	조명설비(T2, 제2관제탑)	368	화재감시제어 시스템	351
02	배전반	104	조명설비(제2교통, 제2합동 등)	233	화재감시제어 운영	397
03	정류기(REC)	75	조명탑, 경관, 항공장애, 사이니지 등	319	수신반 구조 등	302
04	가스절연 다회로개폐기	89	전열설비(휴대폰 충전설비 등)	251	감지기(아나로그, 일반)	289
05	계기용 변류기 외	73	접지설비(피뢰, 희팅판넬 등)	237	중계기-발신기, 시각경보기	236
06	진공차단기(VCB)	254	계측, 측정기기, 검전기구	410	중계기-수계소화설비	201
07	디지털 전력 보호 감시장치	211	고소장비, 고소작업대, 사다리	437	중계기-소화가스소화설비	277
08	변압기(TR)	133			중계기-건물 제연설비	390
09	기중차단기(ACB)	142			중계기-터널 제연설비	223
10	자동절체 스위치	215			중계기-건축 소방설비	239
11	비상 발전기(GEN)	182			유도등, 비상콘센트, 무통 등	274
12	원격제어장치(LCU)	102				
13	무정전전원공급장치(UPS)	297				
14	태양광 발전설비	216				
15	EPS, 분전반, 전기차충전기	245				
계	총 15권	2,297	총 7권	2,255	총 11권	3,179

■ Check(평가/확인): 작성된 세부 지침서 검토 및 평가

- 작성된 세부 지침서 해당 팀 검토
 - 작성된 세부 지침서를 해당팀의 팀장, 파트장, 섹터장 등에 전달하여 요구 사항
 및 충실도, 추가내용 등 검토 요청
 - 각 팀에서 해당 직원들과 협의 검토한 요구 사항 최종 검토
 - 요구 사항 반영 및 기타 필요한 사항 및 오타 오류 등 수정 최종 완료

■ Act(개선/조치): 완성본 팀 배포 및 Web 기반 SYSTEM 구축

- 세부 지침서 제본 및 현장 사무실(팀) 비치
 - 세부 지침서를 컬러로 인쇄 비닐 바운더 처리 현장사무실(팀) 전달 (전기1팀, 전기2팀, 자탐1파트, 자탐2파트, TOC)
 - 세부지침서 현장 비치를 통한 교육 및 필요시 열람 가능토록 조치

 고소장비의 경우 고소장비 담당자의 의견을 토대로 각 장비별 세분화하여 장비에 비치하고 QR 코드를 부착 QR 코드를 통해 해당 고소장비에서 점검 및 사용 방법 등을 확인하고 비상시 신속히 처리할 수 있도록 조치

고소장비 장비별 세분화 작업

고소장비 지침서 비치

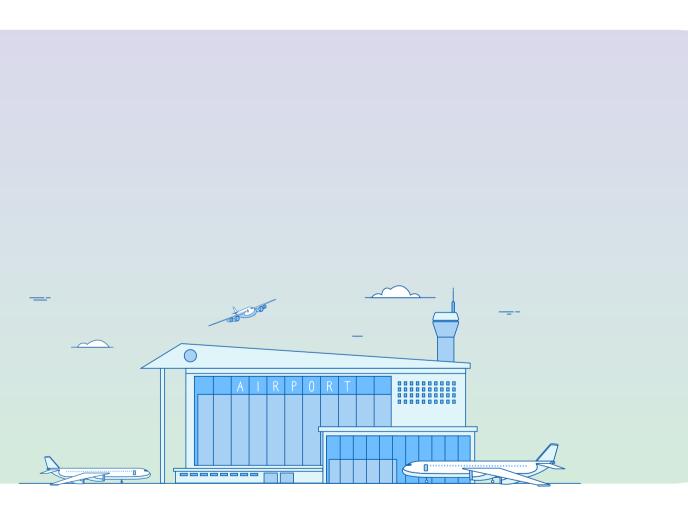
모바일 기기용 QR 코드 부착

- Web 및 모바일 기기를 사용 가능한 SYSTEM 구축
- 전력시설 초급과정(신입직원 초기교육), 전원공급시설 직무교육, 전력제어시스 템 직무교육, 자동화재탐지시설 직무교육, 전력시설 정기교육(직무교육 취득 후 3년마다 1회 실시) 등에 사용되는 교재의 표준화 및 교육의 질을 높이기 위한 검토로 세부지침서를 Web 기반의 SYSTEM 구축 공유 필요성 판단
- 세부 지침서의 활용도를 높이고 현장에서 신속한 대응을 하기 위한 모바일 기기를 사용할 수 있는 SYSTEM 구축 필요 대두
- 자체 서버구축에 따른 Web Page 구축 및 모바일 기기 사용 가능한 SYSTEM 구축
- Web 사이트에서의 세부 지침서 열람

- 모바일 기기에서의 세부 지침서 열람

■ 개선 성과

- SYSTEM 구축에 따른 시행착오도 있었으나 직원의 역량 강화 및 전문성 확보, 생산성 향상을 위하고 미래를 위한 투자의 가치가 있다고 판단됨
- 빅 데이터를 통한 직무전문가를 육성하기 위해서는 정확하고 필수적인 수 많은 자료가 공유되어 누구라도 접근이 가능토록 SYSTEM 구축이 필요하다는 판단이 되는 중요한 계기가 되었음
- 인천공항시설관리〈비전 2025 중장기 경영계획〉전략목표의〈공항시설관리 선진화〉"스마트 시설관리 시스템 구축", "고품질 공항시설 유지괸리"에 초점이 맞춰있는 만큼 해당 내용이 인천공항 시설관리 전략목표에 부합할 것으로 판단됨



정성적 성과	 제작사, 시공사에서 제출된 각종 문서의 잘못된 내용이나 필요 없는 부분은 괴감히 배제하고 현장에 설치된 내용만으로 충실히 제작 현장 여건에 맞도록 구성 Web 및 모바일 기기를 통해 접근성이 용이 현장에서 직접적인 활용 가치가 높음 현장에 필요한 도서를 사무실 등에서 확인하기 위한 절차를 거치지 않을 수 있어 현장에서 즉각적인 처리 및 대응이 가능하여 업무의 효율성을 높일 수 있음 해당 내용을 사업소에 등록된 근로자라면 누구라도 접근 가능한 구조로 내용을 간단히 확인할 수 있으므로 업무의 능률이 향상됨 현장에 필요한 교육 내용이 통일되어 형식에 치우친 교육이 아닌 체계적인 교육으로 인한 전문성 있는 교육 가능 직원의 역량 강화에 따른 전문적이고 체계적인 자료를 통한 전문가 육성 4단계 후 인원 미충원에 따른 사전 교육 및 전문가 양성으로 인력의 효율적 운영 생산성 향상에 기여
정량적 성과	 SYSTEM 구축에 필요한 SERVER 및 PROGRAM 등 비용이 투입됨(개인 SERVER)) 통신망 Web 및 모바일 기기 Web 구축을 위한 개발 비용 세부 지침서를 작성하기 위한 비용 위에 열거한 내용들만으로도 지적 재산권 등의 비용 외에도 SYSTEM 구축을 위한 HARDWARE, 통신비 등의 비용을 개인적으로 구비 설치하여 금액적으로는 환산하면 수억원에 해당될 것으로 판단됨 정량적인 비용으로 환산하기는 어려움이 있으나 지침서 작성, System 구축 등투자한 시간과 노력을 금액적으로 환산 시 상당량에 해당될 것으로 판단됨 외부 전문가에게 위탁 구축하려 해도 현장의 특성을 살리지 못하면 투자대비 효율성이 떨어지는 문제점이 발생할 수 있으므로 회사에서 적극적인후원 필요

■ 향후 계획

- •위 내용을 토대로 현장에서 필요한 각종 자료를 공유하고, 안전 관련 내용 추가 및 동영상 스트리밍, 각종 이벤트 데이터, 문제은행 등을 통해 전문성을 강화하기 위한 PROGRAM 구축에 만반을 기할 예정임
- 현 SYSTEM에는 세부 지침서 외에도 현장 적용이 가능한 다양한 아이템으로 구성 되고 있으나 기타 구현하고자 하는 내용이 비용 문제로 개별적으로 진행하는 것은 한계가 있음
- 현 SYSTEM은 전력운영사업소에 특화되어 운영되는 내용으로 위 사항을 참고하여 회사에서 SYSTEM을 구축할 수 있는 토대가 마련되어 (인천공항시설관리 비전 2025 중장기 경영계획〉에 부합되는 계기가 될 수 있도록 지원 필요
- 세부 지침서 내용 중 타 사업소에서 적용 가능한 계측기 분야 및 고소장비 분야는 즉시 공유 가능

장려상

01 HST 미터링 컨베이어 개선으로 운영효율 증가 - T1수하물사업소

02 외곽경비보안용 침입감지시스템 장애진단용 자기회로 KIT 제작 - 보안교통사업소

부서명운송그룹T1수하물사업소

작성자 이정만 팀장 외 12명

HST 미터링 컨베이어 개선으로 운영효율 증가

■ 개선 필요성

• 수하물 저장라인에 설치된 HST 미터링 컨베이어 설비의 잦은 벨트 이탈로 설비 운영 시 지속적인 장애가 발생

	저장라인 HST 미터링 컨베이어 정비 내역 (2017년)								
	개소명	교체된 벨트길이	작업 횟수	Jam 발생량		개소명	교체된 벨트길이	작업 횟수	Jam 발생량
CM136E	3HE01HS007	67,600	21	0	CC	132BHE32HS02	3 0	0	0
CM137E	3HE06HS007	78,100	25	65	СС	133BHE37HS02	3 33,380	13	30
CM186E	3HE51HS007	22,200	8	0	СС	182BHE82HS02	3 2,550	1	0
CM187E	3HE56HS007	16,200	6	0	СС	183BHE87HS02	3 91,900	36	7
합계	교체된 벨트길(311,93	0mm	작업횟	수	110호	Jam 발생량	불 1	102회

- 설비 장애로 인한 지각수하물 발생 예방 필요
- 이탈된 벨트로 인하여 드라이브 샤프트 및 각종 휠, 컨베이어 프레임 손상
- 과다한 자재 사용 및 정비작업으로 인한 예산 및 인력 손실

■ 문제점 (원인)

개선 작업 시행 전 CM137BHE06HS007

- 해당 설비 앞뒤로 T/Turn 설비가 설치되어 있어 곡선 진행 시 트레이 하부와 벨트의 마찰로 인해 벨트 이탈이 발생
- Motor가 벨트 후단에 위치하고 있어 구동 과정에서 벨트와 전단부 휠 사이에 유격이 발생하여 벨트 이탈이 발생

및과정

■ 추진내용 (요약)

기존설비

1차 샘플

2차 샘플

3차 샘플

- 1개소를 선정해 샘플 설비로 개조하여 효과를 확인한다
- 샘플 설비를 보완한 최종설비를 개선 대상 8개소에 설치한다

■ 추진과정 (상세)

• 샘플 설비 설치

	1차 샘플	2차 샘플
사진		
Plan 계획	CM137BHE06HS007을 샘플로 선정 1차 개선작업은 2019년 8월에 실시 샘플 설치 후 설비 운영을 관찰하여 효과 및 개선점을 파악하고 다음 계획 수립	 CM137BHE06HS007을 샘플로 선정 2차 개선작업은 2020년 3월에 실시 샘플 설치 후 설비 운영을 관찰하여 효과 및 개선점을 파악하고 다음 계획 수립
Do 실행	 Belt 이탈 문제 해결을 위해 Belt를 제거 Motor로 Drive Wheel을 구동시켜 Tray를 운반하는 Wheel Type Conveyor로 변경 Tension Wheel에 Black Ring을 부착하여 Wheel Type에 적합하도록 변경 	 Slip 문제를 해결하기 위해 중앙에 Drive Wheel을 추가 설치 Link Bet를 연결하여 Motor 동력 전달부 추가
Check 평가	 Test 결과 Belt 이탈 문제는 완전히 해결됨 하지만 Slip이 발생하여 Jam 발생량 증가 ※ 기존설비 Jam 발생량 : 월 평균 0.14회 ※ 1차 샘플 Jam 발생량 : 월 평균 8.57회 	 Tray 진행 시 Slip 없이 정상적으로 진행함 1차 샘플 대비 Jam 발생량 15배 감소 ※ 2차 샘플 Jam 발생량 : 월 평균 0.57회
Act 개선	Drive Wheel이 한곳에만 설치되어 있어 동 력전달부 부족이 Slip의 원인으로 추정 해당 문제점을 보완하여 2차 샘플 설치	2차 샘플을 참고하여 최종 설비를 구상 Wheel Type에 맞춰 Frame 설계를 변경 전체 8개 개소에 최종설비 설치

• 최종 설비 설치

	최종 설비
사진	
Plan 계획	• 2차 샘플 설비의 완성도를 높여 최종 설비 설계 • 2021년 3분기까지 개선 대상 8개소에 순차적으로 설치
Do 실행	 Wheel Type 컨베이어에 적합하도록 Frame을 새롭게 제작 Slip 발생 방지를 위해 Drive Wheel 4 Set를 설치하여 동력전달부를 4곳으로 늘림 자재 마모를 막기 위해 Drive Wheel과 Link Belt가 외부에 노출되지 않도록 함
Check 평가	• Test 결과 Belt 이탈 문제 완전 해결 및 Jam 발생 빈도 현저히 감소 ※ 최종 설비 Jam 발생량 : 월 평균 0회 (2021년 10월 ~ 2022년 7월)
Act 개선	 장기간 설비 운영을 관찰하며 문제점 및 설비의 내구성 확인 기존 설비보다 내구성도 뛰어날 경우 같은 규격의 다른 설비도 Wheel Type으로 변경

정성적 성과	 지각수하물을 사전 예방하여 고객 만족도 증가 설비의 무중단 운영으로 수하물 흐름 안정화 이탈된 Belt로 인한 부차적인 자재 손상 예방
	 작업 횟수 감소로 인해 작업자의 피로 감소 연간 Belt 교체작업 약 110회 감소 ※ 개선작업 이후 Belt 교체 횟수 0회
정량적 성과	• 장애 발생 감소로 인한 시설 가동률 증가 - 연간 약 102회의 Jam 발생 방지 효과 ※ 개선작업 이후 Jam 발생 횟수 0회
	• 자재 교체 빈도의 감소로 인한 자재 구매 비용 절감 - 연간 자재비용 약 1,250만 원 절감 ※ 40,000원 (1m 당 Belt 금액)×311,93m (연간 사용 Belt 길이)

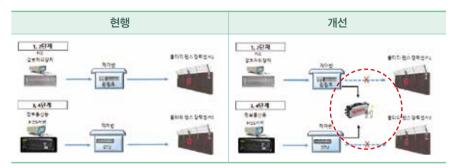
부서명 통신그룹 보안교통사업소

작성자 호미기

외곽경비보안용 침입<mark>감지시스템</mark> 장애진단용 자기회로 KIT 제작

■ 외곽울타리 침입감지시스템(장력센서)의 장애 진단 및 처리시간 단축

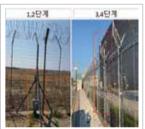
- 필요성 : 고소작업이 필요한 항공보안용 울타리 침입자 검출(장력) 센서 장애 시의 원인분석과 광대한 울타리 구간별 동작 상태를 신속하게 점검함으로써 장애처리 시간을 획기적으로 단축하기 위함
- 현황 분석 : 현장의 제어반 ↔ 장력센서 간의 구간별 거리(약 100~300M)가 길기 때문에 울타리의 장력센서 장치 간 고소작업차로 이동하며 장애 진단을 해야 하는 문제로 장애 원인분석 및 조치 시간이 지연됨
- 개선 방향 : 높은 울타리 위치에서 고소작업을 하지 않고, 지상의 제어반에서 직접 접속하여 고장 위치를 진단하는 「자기회로 진단 KIT 를 자체 제작하여 활용함

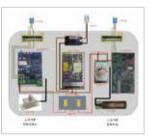

■ 침입감지(장력)센서 자기회로 진단 KIT 구성

- 실제 운영중인 보안울타리 침입감지(장력)센서 설비의 회로를 Tool Box에 소형화 하여 KIT로 구성함
- 지상의 각 제어반에 KIT를 접속 후, 높은 울타리의 센서마다 이동하지 않고 Address(센서 번호)를 변경하여 센서별 정상 여부를 신속히 판단함.

■ 제어반 및 침임감지(장력)센서 적용 대상

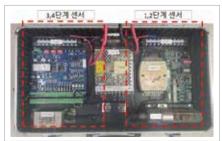
지역	제어반	장력센서	장력센서 운영거리
1, 2단계 지역	72 개소	395 개소	20.14 Km
3, 4단계 지역	10 개소	152 개소	4.37 Km
부대건물	3 개소	28 개소	0.7 Km
합계	85 개소	575 개소	25.21 Km


• 울타리 설비의 시스템 구성 비교



■ 추진 내용

- 1. Plan(계획): 장애 진단 KIT 구성 설계 및 일정 수립(~'22, 04)
 - 현장 운영 센서별 H/W 데이터 수집
 - KIT 회로도 구성 및 설계
 - 필요 모듈 수배(철거 자재 및 예비품 활용)



센서구성 데이터수집(외곽울타리) 센서구성 데이터수집(부대건물)

KIT 회로구성 및 설계

2. Do(실행): 자기회로 진단 KIT 제작('22. 05~06)

- 시스템별(1~2단계, 3~4단계 시공) 파티션 구성 제작
- KIT Test (감지센서 및 프로세서 동작 상태)

KIT 제작

KIT 동작 테스트(디텍터/프로세서)

3. Check(확인): 현장간 KIT 연동 Test('22. 05~06)

- 작업계획서 등록(실제 현장에서 운영중인 시스템에 연결 후 연동 Test)
- 각 제어반에서 센서별 KIT 연결 후 정상 동작 상태 확인
- 센서 번호별 Address 변경하여 서버간 통신 연결 및 경보(알람) 발생 Test

제어반 연결 Test (외곽 LCR) 제어반 연결 Test(컨테이너 LCR) 부대건물 연결 Test (통신실)


4. Act(개선): 현장 점검 후 제작 상태 보완('22. 06)

- 1, 2단계 제어반의 광링크 타입이 KIT와 연결되는 커넥터 타입과 상이함 (커넥터타입 - RJ45 및 5핀 와이어 커넥터 2가지 형태로 변경)
- 작업자의 KIT 조작 수순 및 설명 미비(조작 매뉴얼 작성 후 비치)

정성적 성과	• 통신 장애 및 오경보 발생 시 신속한 원인분석 가능 • 현장 점검 시 최소의 작업 동선으로 최대의 효율적 대응 • 장애 처리 및 조치 시간 200% 단축 (외곽울타리 평균 장애 진단 시간 : 약 60분)
정량적 성과	 자체 회로구성 작업으로 제작비용 절감 제작노무비(통신설비공): 233,636원(※ 정부노임단가 기준) 종합시험비(식): 194,878원×3 = 584,634원 (1,2단계×3,4단계×부대건물)
	• 철거품의 재활용으로 자재비 등 원가절감 (약 200만원 상당의 자재 활용) - 감지기 2개, 프로세서 2개, 아이솔레이터 2개, SMPS 1개, ELB 1개 - UTP 케이블 3M, 전원용 케이블 1M - 공구함(Tool Box)

입선

- 01 「위탁사업비 정산기준」 수립을 통한 업무 개선 계약팀
- 02 사업본부 품질분임조 활동 운영 사업기획팀
- 03 수입장비 주요 소모품 "국산화"를 통한 품질개선 및 비용절감, 업무효율 증대 비행장사업소
- **04 ICS Merge/Divert 구동휠 추가 설치** T2수하물사업소
- 05 항공등화 매입용 철제홀 변형 문제점 개선으로 유지보수 및 재설치 비용 절감 등회환경사업소

부서명 경영기획그룹 계약팀

작성자 유민정

「위탁사업비 정산기준」 수립을 통한 업무 개선

■ 위탁사업의 인력투입 인정기준 통일 필요

• '건년까지는 인건비의 인력투입 인정기준이 사업별(14개 계약)*로 시행되었으나, '22년부터는 단일계약으로 진행됨에 따라 인력투입 인정기준 통일 필요

추진내용 및 과정

① 기준 수립의 필요성 건의 ('22, 2, ~ 3.)

구분	주요내용	비고
1차	• '미투입인력 기성정산' 관련 1차 서면 · 대면 건의 - 지급기준 통일 및 병가 · 질병휴직 등에 대한 기성지급 재검토 요청 ('22, 1분기 기성분부터 적용)	'22, 2, 25, (서면) '22, 3, 2, (대면)
2차	• 2차 대면 건의 - 정산 기준 및 대상 관련하여 우리회사 입장을 재차 강조	'22, 3, 16, (대면)
3차	•「공사-자회사 1분기 사장단 간담회」 안건 상정	'22, 3, 30,

^{※ 2}자회사 및 3자회사도 사업에 따라 기성여부 상이

② 법률자문 의뢰 ('22, 3,)

• 자문기관 : 법무법인 세광(*** 변호사)

• 자문건명 : 위탁사업의 미투입인력 기성정산 타당성 여부

• 자문결과

구분	검토내용	
휴가	병가, 출산전후휴가 등은 근로조건에 관한 사항이고 결원이라 볼 수 없으므로 기성금 지급 대상	
휴직	휴직 고정비와 변동비를 구분하고 있고, 단순한 계약인원 미투입은 채무불이행에 해당하지 않으므로 기성금 지급 대상	
타임오프	개념상 결원이라고 볼 수 없으므로 기성금 지급 대상	

[※] 公社에 해당내용을 제출하였으나, 公社 법률자문 의뢰 결과 기성금 지급의무 없음 주장

^{*} 동일한 휴가 · 휴직임에도 불구하고 사업에 따라 기성여부 상이

❸ 위탁사업 정산 타기관 사례조사 ('22. 3.)

•조사대상 : 정규직 전환 자회사 10개計

• 조사내용 : 인력투입 인정기준 수립 유무 및 정산기준

• 조사결과 : 인력투입 인정기준이 수립된 곳은 없으며, 회사마다 정산기준 상이

기성지급 기준	해당회사	비고
(^) 이렇트이고 모자 게야크애니고 기서되고	3개社	대체투입 X
(A) 인력투입과 무관 계약금액대로 기성지급	3개社	대체투입 O
(B) 자회사에서 직원에게 <mark>지급하는대로</mark> 지급	1711社	
(C) 항목별 지급세부기준 <mark>합의하여</mark> 기성지급	3개社	

[※] 사례조사 결과 회사마다 기준이 상이함에 따라 公社와의 별도의 기준 수립 필요성 증가

4 「위탁사업비 정산기준」수립 ('22. 6.)

• 휴가 · 휴직 · 풀타임오프 등 유형에 따른 인정여부 확정

구분		현행	개선
휴가	연차휴가	인정	인정
	공가	인정	인정
	경조휴가	혼재	인정
	배우자출산	혼재	인정
	출산전후휴가	불인정	인정(일부)
	산재병가	불인정	인정
	업무외병가	불인정	인정(일부)
	가족돌봄휴가	불인정	불인정
	자녀 돌봄 휴가	인정	불인정
	보건휴가	인정	불인정
휴직	업무외질병	불인정	불인정
	육아휴직	불인정	불인정
근로시간면제	풀타임	불인정	불인정
	파트타임	인정	인정

정성적 성과	 사업본부의 기성 정산업무 수행시 25개 사업에 동일한 인력투입 인정기준을 적용하여 기성 담당자의 업무 효율 개선 자회사를 대표하여 公社에 의견을 제시하고 협의한 결과, 公社 위탁사업을 수행하는 모든 자회사(시설관리, 운영서비스, 보안)에 공통된 정산기준을 적용함으로써 자회사 간 부당한 처우 및 혼란 방지 모ー자회사 간 위탁사업비 정산기준이 부재한 상황에서 우수사례로 활용 가능
정량적 성과	• 혼재 및 불인정 항목의 인정 전환으로 412백만원 추가 수령 가능(21년 기준) • 경조휴가 34백만원, 배우자출산휴가 24백만원, 출산전후휴가 56백만원, 산재병가 97백만원, 업무외병가 201백만원

부서명

작성자

사업본부 품질분임조 활동 운영

- 사내 분임조 활동 제도를 도입하여 유 · 무형의 문제점 발굴 및 이를 해결하는 과정을 통해 우리회사가 제공하는 공항 시설관리 품질을 향상하기 위함
- 문제 해결을 위한 직원들의 적극적인 참여를 유도하여 사내 개선활동 강화 및 혁신 문화 확산 유도

츠진내용 및과정

***** PDCA 작성 권고 : Plan(계획) → Do(실행) → Check (평가/확인) → Act(개선/조치)

■ 분임조 활동 시행 계획 수립

• 추진배경/목적, 진행 프로세스, 연간 일정, 포상방안 등 활동 전반에 대한 계획 수립

현행	개선
 사업소별로 개선활동을 수행중이나 진행과정에 대해 구체적으로 알기 어렵고 결과만 공유하는 상황임 	• 현장의 개선 주제 선정부터 해결방안을 모색하여 실행에 옮기고 효과 분석까지의 일련의 과정을 체계적인 프로세스에 따라 심층 수행하기 위한 제도의 도입

• 품질 분임조 활동 주제(17개 분임조)

분임조명	사업소	활동주제
F4	토목조경	벽면녹화 인조화 교체로 안전성 향상 및 비용 절감
안전운항	비행장	장비가동 미숙으로 인한 업무효율저하 및 안전사고 개연성 문제 개선
건축1팀	건축	T2 여객터미널 QR코드 활용 스마트 점검 및 유지보수 관리 개선
T1 BHS	T1수하물	Tray MES Lateral 수동분류 추가 기능 개선
BHS TF팀	T2수하물	T2 BHS지역 내 위험요소 ZERO화
절차탁마	철도시설	외산차량 추진제어장치 개선을 통한 유지관리 시간 및 비용 절감
No.1 승강	승강시설	승강기 이용자 안전홍보 강화를 통한 안전사고 감소
자재를합시다	기계	자재 입출고 오류 방지
혁신하조	열원	어플리케이션 구축 활용으로 업무 프로세스 개선
델류지	플랜트	공항플랜트 운영방법 개선을 통한 에너지 절감

분임조명	사업소	활동주제
E-Light	전력계통	캐노피 조명등 설비 개선으로 비용절감 및 작업시간 단축
룩업	전력운영	IAT터널 내 조명설비 원방제어 구성
뚜벅이	등화환경	항공등화 맨홀 및 핸드홀 인상기 제작
공항통신	공항통신	통신실 시설 및 장비 예방점검 프로세스 개선으로 점검시간 단축
익새모	보안교통	N/W 스위치 정보보안 관리시간 단축
스타므 통합정보	정보시스템	통합정보시스템(IIS) 모니터링 업무 전산화를 통한 운영 효율화 방안 도출
날아라 슈퍼 대시보드	공용여객	효율적인 장애분석 프로세스 개선을 위한 분석도구 고도화

■ 분임조 활동 시행

- 사내 1기 총 17개 분임조를 결성하여'주제선정'부터'반성 및 향후계획'까지 총 10단계 프로세스에 따라 활동 진행
- * 예시) (전력계통사업소) 캐노피 조명등 설비 개선으로 작업시간 단축 (6단계) 대책 수립 및 실시 : 문제에 대한 개선대책 수립 및 현장 적용

■ 분임조 활동현황 정기 점검 및 최종평가 예정

- 분임조별 매월 활동 보고서를 취합하여 활동 현황을 점검하고 이슈사항 및 지원 필요사항 확인
- 각 분임조와 수시로 미팅을 통해 개선활동 내용에 대해 구체적인 사항 공유
 - 아이디어 회의, 개선품 제작, 현장적용 현황, 예상효과, 돌발이슈 등
 - * 예시) (보안교통사업소) 네트워크 스위치 정보보안 관리시간 단축

(6단계) 대책 시행 중 정기적인 회합 활동

(7단계) 대책 실시 후 효과성 분석 및 검토

• 활동 종료 후 분임조 활동 발표회를 통해 결과에 대한 최종 평가 예정

■ 분임조 활동 결과 사후관리 예정

- •1기 분임조 활동 결과물에 대해 지속적인 사후관리 예정
- 효과의 지속성, 추가 환류사항에 대한 실행 여부 등

정성적 성과	 - 공항공사 오더 수행 중심에서 벗어나 주도적인 현장 혁신을 통한 시설 유지 관리 품질 강화에 기여 - 직원들의 자발적인 개선활동 참여 유도를 통해 사내 혁신문화의 점진적 확산 - 분임조 활동 우수 결과물을 축적하여 향후 신사업 연계 추진 검토
정량적 성과	점검 및 작업시간 단축 비용 절감 안전사고 예방 등

• 분임조별 상세내역

사업소	정성적 성과	정량적 성과	
토목조경	항상 싱싱한 조경 유지로 공항 이용객의 심미적 만족도 향상	생회를 인조화로 교체하여 유지보수 비용(자재비) 절감	
비행장	직원들의 장비 가동 숙련도 향상으로 안전사고 절감에 기여	직원들의 장비 가동 숙련도 향상으로 작업시간 단축	
건축	신속, 정확한 유지보수로 공항 이용객 편의성 향상	시설물 점검 방식의 스마트화로 점검시간 단축	
T1수하물	수하물 시스템 장애 발생 시 신속한 대응이 가능	장애 발생 시 소요되는 <mark>인력 감소</mark> (사람 이 직접 수허물을 분류, 운반해야 함)	
T2수하물	지속적인 위험요소 제거로 근무자 작업환경 개선	안전사고로 인한 비용 절감	
철도시설	유지관리 효율 향상으로 이용객 편의성 향상	원활한 자재 수급으로 유지보수 비용 절감 및 소요시간 단축	
승강시설	이용객의 안전의식 향상을 통한 안전사고 예방	안전사고로 인한 <mark>비용 절감</mark>	
기계	자재 규격 표준화를 통한 근로자 편의성 향상	효율적인 자재관리로 인해 비용 절감 및 작업 시간 단축	
열원	업무 전산화를 통한 유지관리 품질 향상	예방점검에 소요되는 불필요한 비용 감소 및 점검시간 단축	
플랜트	효율적인 설비 가동으로 시설 이용자 만족도 향상	설비 가동시간 감소로 시설물 수명 향상 및 비용(전기료) 절감	
전력계통	공용부의 안정적인 조도 확보로 이용객 편의성 향상	기존 설비 개선을 통해 유지보수 비용 및 소요 시간 감소	
전력운영	조명제어 편의성 증가로 타 부서와의 원활한 업무협조 가능	미사용 구간의 조명 제어 소요시간 단축	
등화환경	중량물 취급으로 인한 근로자 안전사고 예방 효과	작업 중 근골격계 질환 감소로 산재 소요비용 감소	
공항통신	모든 직원이 모든 설비의 점검이 가능하여 업무 역량 향상	예방점검 절차 개선을 통한 점검 소요시간 단축	
보안교통	정보보안의 전산화를 통해 휴먼에러 방지	정보보안 관리 소요시간 단축	
정보시스템	수기점검의 전산화로 이상 데이터 검출 효과 향상	모니터링의 전산화로 점검 소요시간 단축	
공용여객	취득 데이터 신뢰성 향상으로 유지관리 품질 향상	효율적인 데이터 분석을 통한 점검 소요시간 단축	

시설그룹

작성자

품질개선 및 비용절감, 업무효율 증대

추진배경

■ 개요

유지보수 및 제설장비 부품 구입 시 납품기간 및 높은 가격으로 부품 구매에 상당 한 시간과 비용이 소요되므로 장비 가동률 향상과 예산절감을 위한 국산화 필요

■ 장비 현황

장비	외산장비	국산장비	취득금액
143대	67대	76대	400억원

츠진내용 및과정

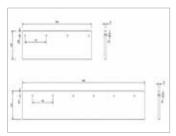
■ 추진내용

• 혀안사항

현행	개선
제작사 및 독점 업체를 통한 납품 납품기간 과다소요 높은 단가 제작사 및 독점 업체 의존	• 국내 업체를 통한 제작 구매 - 납품기간 단축 - 품질개선으로 수명 및 정비주기 연장 - 국내 업체 선정으로 단가 절감

■ 추진과정

- Plan(계획)
 - 국내 제작 가능 업체 조사
 - 부품 재질선정 및 도면화


THUIN	÷	품질개선	특징	
장비명	현행	변경		
견인식제설차	고무 5P컨베어벨트 고무		내마모성, 내후성 향상	
청소차	폴리에틸렌 초고밀도 폴리에틸렌		내충격성, 내마모성 향상	
녹지장비	항목별 개선사항 적용(강도, 내구성 등)		내마모성, 내경질성 향상	

• Do(실행)

- 제작사 제작가능 여부 확인
- 제작 단가 시장 조사
- 국산화 개선품 제작 및 장착

러버스커트(국산)

러버스커트(국산)

러버스커트 장착

전방 석션마우스 보호 플레이트(국산)

후방 석션마우스 보호 플레이트(국산)

석션마우스 보호 플레이트 장착

블레이드 날(국산)

풀리(국산)

스핀들 어셈블리(국산)

블레이드 벨트(국산)

유압 호스(국산)

베어링 하우징(국산)

• Check(평가/확인)

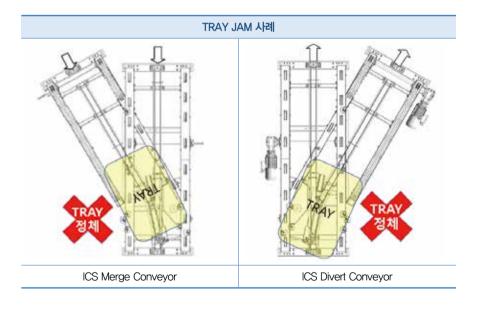
- 제설장비는 금년 겨울 제설 작업 시 부품 마모도 확인 예정
- 청소차 외산 부품과 국산 개선부품 비교 시 이상 없음
- 국산화로 원가 절감 및 재질개선으로 만족도가 높음
- 불확실한 납품 기간을 단기간으로 줄여 장비의 가동률 향상

• Act(개선/조치)

- 제설장비 러버 스커트는 11대분중 4대분만 제작 장착하여 추후 제설작업 후 성능 및 이상여부 등 관찰 예정 향후 7대분 추가 제작 및 장착 예정
- 외산부품 국산화 개선 시 만족도가 높아 다른 제설장비 및 유지보수장비 조사 후 추가 개선 시행

정성적 성과	 고가의 외산장비 부품 국산화를 통한 원가 절감 부품 내구성 향상 및 품질개선 노력 납품기간 단축으로 장비 가동률 향상 많은 외산 장비 보유로 앞으로 추가 국산화 개선 시 추가 원가 절감
정량적 성과	• 견인식 제설장비 러버스커트 국산화 개선품으로 44,426천원/회 비용절감 • 청소차 보호 플레이트 국산화 개선품으로 1,886천원/회 비용절감 • 녹지장비 국산화 개선품으로 936천원/회 비용절감 • 국산화 개선품 사용으로 회당 47백만원 절감되어 연간 약1억원 절감효과

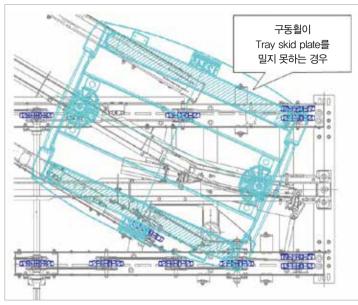
부서명 운송그룹 T2수하물사업소


작성자 송경주

ICS Merge/Divert 구동휠 추가설치

■ 배경

- 문제점
 - 수하물을 이송하는 Tray가 Merge/Divert Conv'의 구동휠(Track wheel)의 이송 범위를 이탈하여 진행하지 못하고 컨베이어(곡선부)에 정체되어 Jam 발생.
- Jam 발생 시 Tray 정상화 및 라인 재가동을 위하여 현장 근로자 투입 필요.
- Jam 처리 완료까지 관련 연결 라인 설비 정지로 인한 운영 안정화 저하.



추진내용 및 과정

■ Plan(계획)

- ❶ Fault 발생 주요 원인 파악
 - Jam Fault 원인
 - 중량 수하물이나 기타 외부요인에 의해 Tray가 곡선 부의 구동휠 가동범위를 이탈.

〈Tray Jam 사례〉

2 장애 발생 현황

• Merge/Divert Jam 발생 현황(2018/9년도 BHS 정상 운영 시 기준)

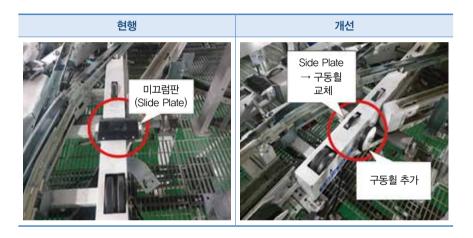
NI- 776	ICS Merge Con'v		ICS Divert Con'v		ul –	
No	구간	2018	2019	2018	2019	비고
1	EBS	74 건	27 건	193 건	113 건	
2	ETS	194 건	183 건	654 건	237 건	
3	WING	188 건	43 건	568 건	343 건	
4	Backbone	297 건	130 건	3578 건	439 건	
5	00G	23건	48 건	23 건	4 건	
	합계	2,534 건	431 건	2,508 건	1,136 건	

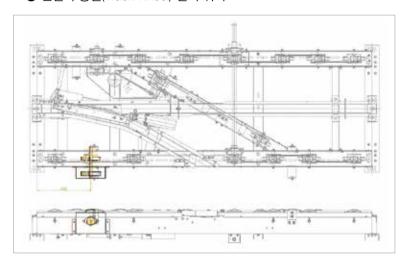
※ 해당 기간 수하물 처리량

- 2018년도 수허물처리량(출발, 환승): 9,300,017(Jam Fault 발생 5042건, 0.054%)

- 2019년도 수허물처리량(출발, 환승): 10,859,747(Jam Fault 발생 1567건, 0,014%)

❸ Tray 장애 예방 방안 강구

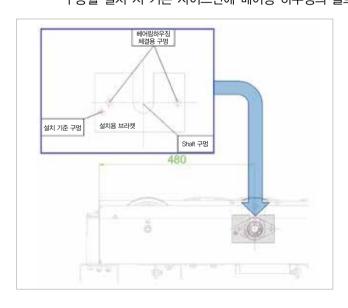

- Shuttle 가이드 브라켓 개선
 - 구동휠의 가동범위를 벗어난 위치에 구동휠을 추가하여 Tray가 정체 되지 않도록 Tray Jam 방지.


■ Do(실행)

❶ 개선안

현행	개선
 미끄럼판(Slide Plate) Tray의 skid plate(구동휠에 접촉되어 진행 가능한 Tray 밑판)가 미끄러져 진행하기 위한 파트. Tray가 간헐적으로 구동휠 가동범위를 벗어나 미끄럼판에 위치 시 정체되어 Jam fault 발생. 	 구동휠(Track wheel) 미끄럼판 위치에 구동휠을 설치하여 정체되어 있는 Tray를 진행하도록 리드. 사이드판에 구동휠을 추가 설치하여 정체되어 있는 Tray를 진행하도록 리드.

② 신설 구동휠(Track wheel) 설치 위치


■ Check(평가/확인)

- 구동휠 설치 후 평가
 - 구동휠(Track wheel) 샘플 설치 후 모니터링 결과 Merge/Divert 컨베이어 곡선 부 Tray 진행 시 효과적으로 Tray 이송이 가능함.

■ Act(개선/조치)

- 설치용 브라켓 제작
 - 구멍 가공용 마킹
 - 구동휠 설치 시 기존 사이드판에 구동휠 체결을 위한 홀가공 시 정확한 위치를 마킹하여 작업할 수 있도록 제작.
 - 2 Liner 용도
 - 구동휠 설치 시 기존 사이드판에 베어링 하우징의 볼트 고정이 필요한데

사이드판 두께(3mm)가 얇아 사이드판의 고정이 견고하지 않아 브라켓을 Liner의 용도로 볼트와 함께 체결하여 설치 안정성 확보.

정성적 성과

- Jam Fault 감소에 따른 지각 수하물 최소화로 고객 만족도 증가
- 4단계 ICS Merge/Divert Conveyor 추가 구동휠 반영 후 납품(Siemens社)
- 신설 구동휠 설치 후 개선 효과 분석
 - 신설 구동휠 반영 50개소 전후 비교 분석 결과 : Fault 발생률 약 37% 감소

구분	컨베이어 수량	Fault 수량 (22년1월 ~6월)	개소당 평균 Fault 수	
구동휠 미설치 개소	352	734	2.09	
구동 휠 설치 개소	50	52	1.04	

정량적 성과

구분	월 평균 Fault 처리 수	Fault당 처리시간 (15분)	Fault 처리소요 인원	분당 평균 임금 (1인 기준)	Fault 처리 소요 인원 대비 유형 비용(원)
구동휠 미설치 개소	275	4125	2	306	30,294,000
구 동 휠 설치 개소	137 2055 2 306		15,091,920		
Fault 감소에 의한 소요 인원 대비 연간 절감 효과					15,202,080

- 설치 구간 지속 모니터링 개선 효과 검증 : 모니터링 기간 1년(22.01 ~현재)

부서명 전기그룹 등화환경사업소

작성자 최변증

항공등화 매입용 철제홀 변형 문제점 개선으로 유지보수 및 재설치 비용 절감

■ 문제인식 및 대안

• 활주로를 구성하고 있는 콘크리트 구조물과 매입 등기구용 철제홀의 물성 차이로 두 물체의 온도 변화에 의한 팽창과 수축 발생 시 철제홀의 변형 (밀림, 찌그러짐, 뒤틀림)발생 추정.

상, 하부철제홀 밀림 현상 (측면도)

상, 하부 철제홀 밀림으로 하부 철제홀 플렌지 노출

등기구 위치에 따라 밀린 거리의 차이 발생 확인

• 활주로 남, 북 말단에 위치한 Overrun(정지로) 지역내 설치된 ALS 매입 등기구용 철제홀의 변형 발생으로 철제홀 내부에 설치된 TR, ASD 고장 발생 시 교체 문제 발생(변형 현상 없는 경우 개구부 확보 필요 없음).

개구부를 넓히기 위한 하부 철제홀 플렌지 따내기 작업

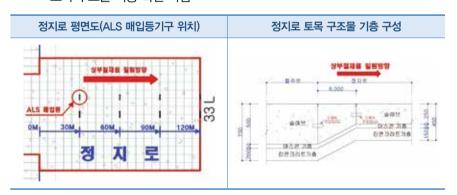
개구부 확보를 위한 하부 철제홀 플렌지 천공 진행

ASD, TR, 접석콘넥터 수리를 위한 개구부 확보

• 활상기 내용과 같이 변형된 철제홀에 고장(ASD Fault, 절연저항 감소) 및 변형 심화에 의한 항공등화 관련 회로의 단선 발생 시 고장 수리가 신속히 진행되지 않는 경우 항공등화 운영에 막대한 지장은 물론 랜딩 중 항공기에 지대한 악영향을 미치는바 정확한 변형 원인 조사 및 영구적인 해결 방법을 찾아 항공기 안전운항, 유지보수 시간 단축 및 공사비 절감에 대한 최선의 방법을 찾고자 함.

■ Plan(계획)

- 1활주로 남. 북 정지로 지역 변형 원인 확인.
- 활주로 및 정지로의 토목구조물 기층 확인을 통하여, ALS 매입 철제홀 변형(밀림) 의 원인을 규명하기 위한 정확한 조사 실시.
- 철제홀 변형 원인 확인 후 재발 발생 방지를 위한 경제적, 합리적 작업 방법 도출 및 시공.


■ Do(실행)

- 철제홀 변형 원인 확인
 - 구간별 변형 평균 길이 및 철제홀 수량

단위 : 개

지역		설치 점검 수량 수량	변형	구간별 변형 평균 길이(mm))(mm)	ulэ	
			수량	수량	30M	60M	90M	120M	비고
1 하지고	15R	44	44	44	46	66	86	105	활주로에서 멀어질 수
1 활주로	33L	44	44	44	19	35	50	60	록 변형 폭이 넓어짐

- 토목 구조물 기층 확인 작업

– 변형 원인

- 구간별 변형 평균 길이 확인 결과 변형 폭이 외부로 갈수록 넓어짐. (33L 기준: 19mm < 35mm < 50mm)
- 정지로 토목구조물 기층 단면도상 슬래브 하부에 물성이 다른 아스콘 시설 및 슬래브 두께 차이 확인(활주로: 500mm, 정지로: 250mm)
- 상기 내용으로 볼 때 상부 콘크리트의 온도 변화에 따른 수축 팽창과 함께 등기구용 상부 철제홀이 활주로에서 녹지 방향으로 변형 된 것으로 추정됨 (정지로 측 슬래브 면적이 적고 두께가 얇음).

• 작업 진행

구분	작업사진	작업내용
① 철제홀 설치용 코아 작업	-0-	 상부 철제홀 설치를 위한 하부 철제홀 좌표 확인 및 코아 작업. 배수관을 제외한 기존 하부 철제홀 레미탈 마감.
② 콘크리트 컷팅 작업		- 등기구와 핸드홀 구간 케이블 입선을 위한 콘크리트 컷팅 및 강제 전선관 설치 작업. (54mm 2열 배관)
③ 철제홀 설치	-0	- Shallow Base Type 철제홀 설치. (하부 철제홀 없이 낮은 철제홀 사용)
④ 강제 전선관 및 핸드홀 시공		– TR(절연 변압기) 및 ASD 설치를 위한 핸드홀 및 전선관 설치 작업.
⑤ 케이블 입선 및 부속기기 설치 작업		핸드홀 내부 기기 설치용 브라켓트 설치.TR(절연 변압기) 및 ASD 설치 및 케이블 입선 작업.

■ Check(평가/확인)

- 상, 하부 철제홀 좌표 확인 ALS 등기구 설치기준(등기구간 설치 간격 30m을 충족 시키기 위하여 추정이 아닌 상부 또는 하부 철제홀 중 실제 변형 철제홀 확인을 위한 좌표 측정 필요성 대두.
- 위에서 언급된 작업 방법 및 변형이 일어난 곳은 녹지에 핸드홀을 설치할 수 있는 정지로 지역을 기준 한 것으로 활주로, 유도로, 계류장, 화물 터미널 등 정지로 이외의 지역에 대한 변형 상태 조사 필요성 대두.

■ Act(개선/조치)

711	711 14/T = 1\ TJ		-U.14/-	-=ı\ -			
구분	개선(조치) 전		개선(조	조치) 후			
	 변형 원인을 자료를 통한 추정 활주로 남, 북 정지로 지역 매입 상부 철제홀 변 	 변형 원인을 <mark>좌표로 확인</mark>(33L 정지로 지역) 실제 철제홀 변형 방향을 현장에서 확인 육안 및 토목 도면을 이용 확인 하였으나 GPS 좌표 측정을 통하여 과학적 증명 실시. 					
변형 원인	형 방향이 활주로 측에서 녹지 방향 임을 확인.	등번호	ALS01M -003	ALS02M -003	ALS01M -008	ALS02M -008	
	– 토목 규조물 기층 분석을	위치	30M	60M	90M	120M	
	통하여 하부가 아닌 상부 철제홀의 이동 을 확인.	하부 절제홀 기준 상부 철제홀 변형 길이	40mm	55mm	35mm	48mm	
		- 좌표 측정을 통하여 상부 철제홀 밀림 확인.					
작업 방법	정지로 지역 작업 방법 정지로 지역에 국한. 철제홀 변형 방지위 Shallow Base Type 철제홀 설치. TR(절연 변압기) 및 ASD 설치를 위한 별도의 핸드홀 설치.(하부 철제홀 사용하지 않음으로 토목 구조물 변화에 따른 철제홀변형문제점 해결) 사용 하지 않는 하부 철제홀은 배수관을 제외한레미탈마감.	기타지역 작업 방법 지역 외 유사 변형 철제홀 작업 방법 수립. 작업전 작업후 - 개별 등기구 상부 철제홀 코아 작업 후 변형 길이 만큼 이동 후 재설치				AN W	

정성적 성과	 토목 구조물 기층 변화에 의한 완전한 대비로 이로 인한 이후 별도의 대비책 강구 필요 없음. 낮은 철제홀(Sallow Base Type)에는 등기구만 설치, 별도 핸드홀을 이용 ASD 및 절연 변압기 설치로 변형에 의한 인출 문제 해결로 유지보수 상당 시간 단축. 상부 철제홀 변형에 의한 비정상적인 등화 빔각도의 항공등화 기준광도 미달 방지. 정지로 지역 이외의 장소에서 발생되는 유사 변형 현상에 대한 작업기준 확보.
정량적 성과	 개선에 의한 절감 금액 산정 기준 ALS용 철제홀 변형에 의한 교체 기준: 10년에 최대 3회(활주로 최초 작업 후 10년 이후) 4개 활주로 정지로 8개 지역. 공사 방법 변경에 의한 절감 금액(개선 후 최초 10년): 2,178,000,000 − 1,660,000,000 = 518,000,000[원] 절감 금액 산출식 개선 후 공사 방식 비용: 207,500,000(정지로 1개 지역 공사비)×8 = 1,660,000,000[원] 개선 전 공사 방식 비용: 90,750,000×8 = 726,000,000×3 = 2,178,000,000[원] 개선 종료 후 매 10년 마다 2,178,000,000[원] 절감 효과 발생.

